

FUSION Diagnostics First Annual Review: Introduction and Meeting Objectives

Scott Hsu, Program Director, ARPA-E

March 5, 2021

From talk given by B.B. Kadomtsev at Culham in 1988 (courtesy EUROfusion).

Outline

- ► Introduction to ARPA-E fusion programs
- ► Motivation of the FUSION Diagnostics mini-program and "capability teams"
- Meeting overview/objectives

Framing fusion energy

Need massive shift away from fossil fuels

CHANGING WHAT'S POSSIBLE

Need firm, low-carbon sources for costeffective deep decarbonization

N. A. Sepulveda et al., <u>Joule 2, 2403 (2018)</u>

ARPA-E fusion timeline/programs

Overarching themes of the ARPA-E fusion portfolio

Support potentially transformational R&D to enable a commercially viable DEMO on a two-decade time scale

Technical drivers

More *low-cost* approaches at higher levels of fusion performance

+ capability teams

Accelerate progress in developing required technologies/materials from first wall to heat exchanger

joint with FES

Programmatic drivers

Engage larger portion of the fusion R&D community

Leverage SotA expertise/capabilities

Incentivize publicly and privately funded teams to work together

Rationale for "capability teams"

Leverage the best expertise

Avoid reinventing the wheel by each concept team

Stretch limited \$\$

Build public-private partnerships

FUSION Diagnostics mini-program objectives

Transportable diagnostics

High-quality data on ARPA-E-supported fusion experiments

Leverage expertise of entire fusion community

Build the teams & experience for PPP programs

Technical parameters of interest (from the FOA)

Table 2. Parameters of interest and their approximate range of values for the two classes of priority concepts given in Table 1.

Parameter of interest	Magnetically confined	Pulsed, intermediate density
Ion and electron density	10 ¹³ –10 ¹⁴ cm ⁻³	10 ¹⁶ –10 ²¹ cm ⁻³
Electron temperature	10–2000 eV	100–3000 eV
Ion temperature	10–2000 eV	100–10000 eV
Magnetic field	0.1–3 T	1–1000 T
Neutron yields	N/A	10 ⁶ –10 ¹² (DD)
Neutron energy	N/A	2.3–2.8 MeV w/few-keV resolution
Neutron duration	N/A	10 ns – 10 μs
Desired time resolution	< 100 μs	1–1000 ns
Desired spatial resolution	< 1 cm	< 1 mm

Eight projects selected spanning range of diagnostics and plasma parameters

Meeting objectives

- ► Technical updates from all the project teams (plus two "bonus" diagnostic capability teams)
- ► ARPA-E legal team presentation on IP agreements with Q&A
- ► INFUSE and FIA perspectives
- Discussion/feedback

https://arpa-e.energy.gov

